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Current techniques in colloid chemistry permit the synthesis of a large variety of

insulating nanocrystals with a tunable size in the 1-5 nm range, hence considerably smaller

than what can be reached by lithography [1]. The energy level spectrum of these

nanocrystalline quantum dots (Q-dots) in relation to their chemical identity, crystal structure,

size and shape is a matter of experimental and theoretical interest. This is also true for the

inter-particle Coulomb interactions in these confined insulating systems. There is a growing

tendency to study these systems on the level of a single nanocrystal by optical and electrical

techniques.

Resonant tunneling through a single Q-dot can be studied using a Scanning Tunneling

Microscope. The colloidal crystals are anchored on a conducting substrate, the tip is

positioned above a crystal and scanning and feedback controls are disabled. In such a way, a

metal substrate / dot / tip Double-Barrier Tunnel Junction (DBTJ) is formed. In an

asymmetrical configuration, the tunneling spectrum is related to the spectrum of discrete

energy levels of the insulating nanocrystal, while the zero-conductivity gap is related to the

(quasi-particle) band gap [2].

We report on a yet unexplored possibility of STS that may play a key role in the

determination of the single-particle orbital energy spectrum of insulating nanocrystalline Q-

dots [3]. The time-averaged electron occupation of a given (resonant) energy level of the

nanocrystal is determined by the relative rates of electron transfer, into - and out of the energy

level. A Scanning Tunneling Microscope offers the possibility to vary the tip-to-dot distance

and, thus the time-averaged electron occupation of the resonant orbitals of the Q-dot. This

means that Coulomb interactions between electrons in resonant orbitals can be turned on and

off by variation of the tip-to-dot distance.

In shell-tunneling spectroscopy, electrons tunnel one at a time. The conductance

spectrum corresponds to the single-particle orbital energy spectrum of the Q-dot. We obtained

the orbital energy spectrum of a 4.3 nm CdSe Q-dot at 4.2 K and found a very good

agreement with the results of pseudo-potential theory [see figure]. When the tip is brought

closer to the dot, the orbitals are filled accumulatively with electrons (shell-filling

spectroscopy). Electron-electron Coulomb interactions break down the spin and orbital

degeneracy of the electron states of the Q-dot.
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Below, a typical spectrum is shown for a 4.3 nm CdSe nanocrystal.

The spectrum shows tunneling through Valence Band orbitals (small peaks below

–1.5 eV), a zero-conductivity gap (between –1.5 and 1 eV) and tunneling through
discrete Conduction Band orbitals e1,e2,… (above 1 eV). The spectrum agrees well
with the single-particle orbital spectrum obtained from pseudopotential theory: the
zero-conductivity gap corresponds to the sum of the LUMO-HOMO gap and the
electron and hole charging energies; the CB-peaks reveal the five first electron
orbitals of a spherical 4.3 nm CdSe quantum dot: s-type (e1), p-type (e2), d-type (e3),
s-type (e4), f-type (e5).
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