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The title issue has been a traditional, may be 
even ritual, controversy at QUANTSOL (and 
not only there) starting more than 20 years ago. 
In retrospect, this dispute might be viewed as 
one between chemists and electrical engineers. 
Since the solar cell is an electro-chemical 
device, i.e., electrochemical and  electrical 
potentials play a role. (i) The chemist’s view 
based on thermodynamics is that the non-
equilibrium between the electro-chemical 
potentials of electrons and holes is the origin of 
the action of a photovoltaic device. The 
photocurrent is then enabled by the different 
selectivity of the two contacts to the solar cell 
absorber [1]. (ii) The electrical engineer’s view 
based on Maxwell’s equations is that whenever 
in a device a voltage appears there must be a 
capacitive element that accommodates the 
electrical charge to build up this voltage [2]. In 
order to avoid an electrical potential that is 
opposed to the intended flow of charge carriers 
a built-in potential in the right direction is 
desirable. The fact that  both statements are 
completely correct did little in mitigating the 
controversy [3], which might be expressed as 
‘selective contacts vs. built-in potential’. 

A final settlement could be enabled by 
a quantitative definition of the (zero bias) 
selectivity Σ0 by Brendel and Peibst [4] 

  (1)
where  denotes the contact resistance (in 
units Ωcm2) and J0 the saturation current 
density, and  the thermal voltage. 

Figure 1 illustrates a band diagram of a 
generic solar cell with an intrinsic absorber 
material with a band gap energy Eg = 1.4 eV 
and a thickness da of 1 µm and two undoped 
contacts of thickness thickness dc = 25 nm. The 
built-in potential Vbi is defined by the work 
function difference of the two metallic 
contacts. The two contact materials have a 
band gap energy of 1.7 eV arranged by a 
valence band offset  ΔEV= 0.3 eV for the 

electron contact  on the left and a conduction 
band offset  ΔEC= 0.3 eV for the hole contact 
on the right. 

Recombination losses at  the contact 
interfaces are given by interface recombination 
as well as by contact  recombination, i.e. by 
respective minority carriers flowing to the 
metallic contact  [5]. The band offsets in Fig. 1 
are designed to prevent the latter loss. The 
saturation current density associated with 
interface recombination of holes at the electron 
contacts depends on the built-in potential via

 (2)
where Sp is the hole recombination velocity 
and NV the effective density of states in the 
valence band. For contact recombination we 
find analogously 

 (3)
where Dp denotes the diffusion constant  of 
holes in the electron contact. For electron 
recombination at  the hole contact  (r.h.s. in Fig. 
1) hold analogous equations. 

Resistive losses at the contact arise 
because of the limited conductivity of the 
contact  layer. For the electrons at the electron 
contact  we have  with  as 
the conductivity and  as the concentration of 
electrons in the electron contact. Since the 
latter is controlled by the Fermi level position 
at the contact interface, we have 

. (4)
where NC is the effective density of states in 
the conduction band.

Finally we set Eqs. (2) and (3) into Eq. 
(1) to find 

. (5)
In an analogous way we find from 

combining Eqs. (1),(2),(4) 

. (6)
Thus, in both cases the selectivity depends 
exponentially on the built-in voltage. 

The final result, given by Eqs. (5) and (6), 
nicely demonstrates how the dispute ‘selective 
contacts vs. built-in potential’ is to be solved. 
In principle, a ‘perfectly selective’ contact, i.e. 



, can be achieved by a proper choice of 
the parameters in the prefactors of Eq. (5) and 
(6), e.g. by putting the respective majority 
carrier mobility to infinity, or the minority 
carrier mobility or the recombination velocity 
to zero. Thus, the purity of the thermodynamic 
argument [1,5] is preserved.

However, the possibility to control the 
contact  selectivity via the built-in voltage is 
practically much more attractive, because this 
quantity enters exponentially in Eqs. (5) and 
(6). Furthermore, the built-in voltage in many 
cases is reasonably well controlled by doping 
of the contact layers or by a proper choice of 
work functions of the contact materials. This is 
why any solar cell of significant efficiency 
possesses a built-in potential.

It  is important to stress that our arguments 
do not rely on carrier separation in the bulk of 
the absorber material via the built-in field (the 
derivative of the built-in potential). This 
argument is only valid if the carrier mobilities 
in the absorber are below a critical threshold 
[6]. It  is rather that the built-in potential is the 
most  important quantity that minimizes 
majority and minority carrier related losses at 
the contacts. Thus, again both opponents from 
the initial debate are right  in their specific way. 
However, the present  results show that the 
controversy is pointless: The built-in voltage is 
determining the contact selectivity to a large 
extent. A proper design of selective contacts 

has to start with optimizing this quantity in 
order to minimize resistive and recombination 
losses at the same time. 

Figure 1: Band diagram of a generic solar cell 
with an undoped absorber and two contact 
materials. Recombination losses of minority 
carriers (holes at the electron contact to the 
left, electrons at the hole contact to the right) 
are given by interface or contact 
recombination. Resistive losses occur because 
of the finite conductivity of the respective 
majority carriers.
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