Effect of adding a large A cation to self-healing rates of CH₃NH₃PbI₃

Pallavi Singh¹, Davide Raffaele Ceratti², Yahel Sofer¹, Sudipta Bera¹, Yishay Feldman³, Michael Elbaum⁴, Dan Oron¹, David Cahen¹ and <u>Gary Hodes¹</u>

¹ Dept. of Molecular Chem. & Materials Science, Weizmann Institute of Science, Rehovot,

Israel

² PSL, Paris, France ³Chemical Research Support Unit, Weizmann Institute of Science, Rehovot, Israel ⁴ Dept. of Chemical & Biological Physics, Weizmann Institute of Science, Rehovot, Israel

Self-healing (SH) of halide perovskites (HaPs) is likely one of the most important of the many important HaP properties. It can play a direct role in many other properties, such as defect density, charge lifetimes and, of course, device stability. Here we show that in *polycrystalline film* form, which is how they are used most commonly in devices, >10 at.% substitution of methylammonium, MA⁺, on the A site of APbI₃, with the large cations, guanidinium (Gua⁺) or acetamidinium (AA⁺), significantly increases the compounds' recovery kinetics from damage. Substitution with dimethyl ammonium (DMA⁺), which is about the same size as Gua⁺ or AA⁺, does not affect the SH rate. Based on the time scale of the SH, we infer that the ratedetermining step of the SH involves short-range diffusion of A⁺ and/or Pb²⁺ cations. Correlations have been found between the SH rate and strain (from the large cations), dipole moment of the A^+ cation and A^+-I^- hydrogen bonding, which may offer clues for a more detailed mechanism of SH and understanding of SH kinetics. Fast recovery kinetics are important from the device perspective as they will allow complete recovery in *operando* devices, or when switched off (LEDs) / in the dark (PV).