Calibrated Room Temperature Photoluminescence for Quasi-Fermi Level Splitting and Identification of Interface Recombination in a-Si:H/c-Si-Heterojunctions

G.H. Bauer, R. Brüggemann, S. Tardon,

Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, F.R. Germany

We have translated calibrated room temperature photoluminescence yields in (p)c-Si-wafers overcoated with different passivation layers, such as SiN, SiOx, (p)-, (i)-, and (n)-a-Si:H (see Fig.1) into the splitting of the quasi-Fermi levels at AM1-equivalent photon flux excitation. The departure from symmetric passivation of front and rear side, e.g. the with an (n)a-Si:H window layer and a metal at the rear, say the formation of a heterodiode has been monitored step by step via pl-yield studies (Fig. 7). Additional numerical modeling of e.g. local excess carrier densities and pl-emission (Figs.2-6) and the fit to experimental yields demonstrates the extremely high sensitivity of pl against defect densities at the hetero-interface in the regime of about (10¹⁰-10¹²)cm⁻², as well as against the energetic position of these defects in the gap represented by a Gaussian shaped peak and with features determined by a defect pool model (Fig. 8).

Fig. 2 Band diagram from the simulation of a (n)a-Si:H/(p)c-Si junction at thermal equilibrium (a) and at open circuit excited by a mono-chromatic photon flux of 10^{18} cm⁻² s⁻¹ at λ = 782 nm (b); for both diagrams no interface defects have been considered.

Fig. 3 Local carrier densi-ties n(x), p(x), and product n(x)p(x) (a) and splitting of quasi-Fermi levels ($E_{fn}-E_{fp}$) (b) for (n)a-Si:H/(p)c-Si heterodiodes for different interface defect densities $N_{if} = (0, 2 \times 10^{11}, 6 \times 10^{11}, 2 \times 10^{12}, 2 \times 10^{14})$ cm⁻² in open circuit; the thickness of the interface defect layer amounts to 20 nm.

Fig. 4 Local carrier densities n(x), p(x), and product n(x)p(x) (a), and splitting of quasi-Fermi levels (E_{fn} - E_{fp}) (b) for (n)a-Si:H/ (p)c-Si heterodiodes with different interface defect densities $N_{if} = (0, 2 \times 10^{11}, 6 \times 10^{11}, 2 \times 10^{12}, 2 \times 10^{14})$ cm⁻² in short circuit; thickness of the interface defect layer is 20 nm.

Fig. 5 Numerically calculated open circuit voltages V_{oc} (a) and luminescence photon fluxes $Y_{pl,Voc}$ (b) for a-Si:H/c-Si heterojunctions at 300K and 10¹⁸ cm⁻² s⁻¹ flux of monochromatic photons ($\lambda = 782$ nm) versus interface defect densities 2×10^9 cm⁻² < $N_{if} < 2 \times 10^{14}$ cm⁻²; N_{if} distributed at the a-Si:H/c-Si interface within 20nm (closed symbols) or 5 nm (open symbols). The results for $N_{if} = 2 \times 10^9$ cm⁻² are identical with those for $N_{if} = 0$. Note that V_{oc} drops with increasing N_{if} by about 2, whereas $Y_{pl,Voc}$ varies by a factor of 30.

6 Numerically calculated Fig. (closed luminescence yields Y_{pl,Voc} symbols) and open circuit voltages Voc (open symbols) for a-Si:H/c-Si heterojunctions at 300K and $10^{18}\mbox{ cm}^{-2}\mbox{ s}^{-1}$ flux of monochromatic photons (λ = 782 nm) versus minority diffusion lengths L_n for interface defect densities $N_{\rm if} = 2 \times 10^{11} \, {\rm cm}^2$ $N_{if} = 2 \times 10^{14} \text{ cm}^{-2}$ (squares) and (diamonds), 5 nm interface regime. Note that Y_{pl,Voc} is plotted in logarithmic scale whereas Voc is represented linearly.

Fig. 7 Experimental spectral 300K AM1 equivalent PL-yields of c-Si wafers overcoated with different "passivation layers

Fig. 8 Numerically simulated splitting of quasi-Fermi levels in symmetrically passivated (i)a-Si:H/c-Si/(i)a-Si:H layer structure (300K, AM1 equivalent excitation) versus energetic position of interface defect peak E_p - E_v (defect pool model).

1.0