Electrochemically deposited porous tin dioxide films for
photoelectrochemical applications.
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Tin dioxide can be electrochemically synthesized via hydroxyde formation
followed by decomposition into oxide and water. Hydroxylation is achieved by
electrochemical reduction of dissolved oxygen or that of oxygen-containing species as,
for instance, NOs". With nitrate as OH™ source, concentrated solutions can be used
allowing high deposition rates. Recently, SnO,-based supercapacitors, with capacitance
in the range 100-200 F.g'l, have been fabricated by electrolysing Sn(II)Cl, / NaNOj /
HNOj; solutions potentiodynamically on stainless steel substrates [1]. From the point of
view of solar energy conversion, such nanostructured films offer potentialities for dye
sensitization and further utilization in photoelectrochemical cells.

In the present work in progress, a first step is devoted to study and optimize the
conditions for the electrochemical synthesis of porous SnO; films from Sn(II) dichloride
and acidic nitrate baths on F-doped SnO; substrates. The latter (about 300 nm thick) are
deposited by spray pyrolysis on microscope glass slides at 500°C from
SnCly/NH4F/methanol solutions. The mechanism for electrochemical deposition can be
assumed to be as follows. Hydroxyl ions are produced by reduction of nitrates
according to the reaction:

NOs; + H O+ 2e & NO; +2 OH

We have also to consider the oxydation of tin from the II (Sn*") to IV (Sn*") oxidation
state. Sn®" can be oxidized into Sn(OH);" according to the reaction :

Sn(OH);" +3H" +2¢ < Sn*" + 3H,0

This step is followed by the formation of the tin(IV) hydroxide which decomposes into
tin oxide and water :

Sn(OH);" + OH™ ¢ Sn(OH); < SnO, + 2 H,0

Fig.1 a and b show SEM images of a SnO, electrochemical deposit on top of a sprayed
polycrystalline F-SnO, film. It was obtained by cycling potential between 0 and -1.1
V/SCE at 200 mV/s, the bath temperature being kept at 80°C. The thickness lies in the
micrometer range. The deposit is highly dispersed with elementary quasi-spherical
grains of about 100-200 nm in diameter. The as-deposited tin oxide layer is slightly
yellowish. It becomes white after annealing in air at 380°C and well crystallized. Fig.2



shows the X-ray diffraction pattern after 1 hour annealing, which is characteristic of the
cassiterite modification. By measuring the capacitive current when scanning the
potential, the film capacitance was estimated close to 0.5 mF/cm’ considering the
geometric surface area.
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Fig.2 : XRD diagram of electrochemically deposited SnO, after
annealing at 380°C for 1 hour under air.

The second step is concerned with dye sensitization. Two routes are explored: (i)
usual dye chemisorption using commercially available dyes; (ii) efficient chemical
grafting of new perylene-substituted trialkynyltins organic dyes via covalent Sn(oxide)-
O-Sn-C(alkyl) bonds as demonstrated in the case of SnO, nanosized powders [2].
Photoelectrochemical tests will be hopefully presented at the Workshop.
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