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Heterogeneous micro- and nanocrystals with so-called core-shell structure are of special 
interest due to their possible applications in photovoltaic devices including 
nanocrystalline layers for dye-sensitized solar cells and nanocrystalline Si:H films. The 
results reported in this contribution pertain to cubic microcrystals (MC) with a typical 
size between 50 and 500 nm in which core and shell grain has appropriately l and L 
dimension. Figure 1 (left) shows a schematic drawing of a cubic core-shell MC. The 
experiments were provided using model silver halide MC in which AgBrI core was 
covered with a thin (~ 10-20 nm) shell layer of AgBr. The mismatch between lattice 
parameters in core and shell composition (`2-3 %) resulted in creation the misfit 
dislocations in a surface layer of core-shell MC (Fig. 1, right image). Comparing with 
monograin structure, core-shell MCs show much higher photosensitivity and the 
increased values of surface conductivity. At the same time, little is known, how the core-
shell structure influences the electronic properties of a semiconductor MC. 
 
To investigate the relationship between the morphology and electronic properties of core-
shell MC we have provided X-ray and dielectric dispersion (Maxwell-Wagner effect) 
studies of cubic MC with a structure of AgBr0.97I0.03/AgBr. To explain the high surface 
conductivity we present a phenomenological theory of dislocation-induced electronic 
transport in core-shell semiconductor MC. 
 
 

 
 
Fig. 1. Schematic representation of the internal structure of a cubic core-shell microcrystal (left). 
Creation of a misfit dislocation in the interfacial area between core and shell composition (right). 
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The X-ray powder diffraction data were obtained by using a RIGAKU D/MAX-B X-ray 
diffractometer. Figure 2 demonstrates a remarkable difference between X-ray diffraction 
intensities obtained for core-shell structure (a) and for a mixture of the appropriate 
monograin MCs (b). To calculate the relative intensities of X-ray diffraction patters in a 
core-shell structure we have provided the theoretical simulation and obtained the 
appropriate formulas for different MC compositions. Figure 3 (c) presents the results of 
the theoretical simulation together with the experimental results obtained for 
AgBr0.97I0.03/AgBr MCs. 
 

 
 
Fig. 2. X-ray diffraction patterns for AgBr0.97I0.03/AgBr core-shell MC (a) and a mixture of mono 
grain MCs with the same structure. Theoretical simulation of the relative X-ray intensitited in a 

core-shell MCs (c). 
 
Figure 3 shows the experimental curve for dielectric losses in core-shell microcrystals 
imbedded in a dielectric media. The calculation revealed that the value of dark 
conductivity in a surface subsystem (shell) is 2 orders of magnitude higher, than the one 
in the bulk (core).  
 

 
 
 
Fig. 3. Experimental results for 
normalized imaginary part of 
dielectric permittivity for core-shell 
AfgBrI/AgBr MC, embedded in a 
dielectric media (points) and 
theoretical simulation of the 
appropriate contributions from the 
core and the shell subsystems. 
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