Photoinduced charge separation in blends of MEH-PPV with (Pt_{0,75}C₆₀)_n

A.A. Bakulin, S.G. Elizarov, A.E. Ozimova, and D.Yu. Paraschuk^{*} International Laser Center, Moscow State University, Moscow 119992, Russia

M.V. Tsikalova and Yu.N. Novikov Institute of Organoelement Compounds, RAS, Vavilov St. 28, Moscow 119991, Russia

S.A. Arnautov and E.M. Nechvolodova

Institute of Chemical Physics, RAS, Kosygin St. 4, Moscow 119991, Russia

Fullerenes and their derivatives in blends with conjugated polymers are well known to be the most effective acceptors in photoinduced charge transfer reaction. In addition, fullerenes in these blends can form a highly conductive network for collection of photoinduced charges that makes fullerenes indispensable in polymer solar cells. However, the active layer of such an optimized cell contains from 45% [1] to 80% [2] of metanofullerene by weight, which weakly absorbs the solar light. In this work, we study a recently synthesized fullerene-based coordination oligomer ($Pt_{0,75}C_{60}$)_n (Fig. 1) as an acceptor for the photoinduced charge separation in the bulk heterojunction. We were motivated that ($Pt_{0,75}C_{60}$)_n chains could facilitate the charge transport in the bulk heterojunction allowing decreasing the fullerene content in it. Here we report on comparative studies of optical and photophysical properties of MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/C₆₀ blends.

 $(Pt_{0,75}C_{60})_n$ was synthesized by reaction of C_{60} with Pt(dba)₂ (dba=dibenzylideneacetone) at molar ratio Pt(dba)₂/ C_{60} =³/₄ according to [3]. The compound was characterized by elemental analysis, IR and Raman spectroscopies. Drop-cast films of MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/ C_{60} blends were prepared from chlorobenzene for various molar donor-acceptor ratio.

Optical absorption spectra of MEH-PPV/Pt_{0,75}C₆₀ blends are similar to those of MEH-PPV/C₆₀ indicating the absence of essential donor-acceptor interaction in the electronic ground state. Fig. 2 compares the photoluminescence (PL) quenching efficiency in MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/C₆₀ blends. Fig. 2 shows that PL quenching at acceptor content less than 10% is essentially more efficient in MEH-PPV/C₆₀ blends implying more efficient initial charge separation.

Fig. 1. Chemical structure of $(Pt_{0,75}C_{60})_n$ (top) and C_{60} (bottom).

Fig. 2. PL quenching in MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/C₆₀ blends vs acceptor:donor molar ratio referenced to pristine MEH-PPV PL. All values are normalized to absorbed pump power at 532 nm.

^{*} paras@polys.phys.msu.su

Fig. 3. PIA data for 1:0.03 MEH-PPV/Pt_{0,75}C₆₀ (o) and MEH-PPV/C₆₀ (\checkmark) blends photoexcited at 532 with pump intensity 1 W/cm² at 110 K. Almost all the pump power was absorbed in the films. (a) PIA spectra for chopping frequency 70 Hz. The lines are a guide to the eye. (b) Normalized frequency dependences for the 1.3 eV band. Solid lines are fits to the data (see the text).

Fig. 3 compares photoinduced absorption (PIA) data in MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/C₆₀ blends. Fig. 3a shows that both blends give very similar spectra in which the MEH-PPV polaron band at 1.3 eV dominates indicating that charge separated states are effectively excited in MEH-PPV/Pt_{0.75}C₆₀ blends. However, the PIA at 1.3 eV in MEH-PPV/C₆₀ is \sim 2 times higher compared to MEH-PPV/Pt_{0.75}C₆₀ indicating some difference in charge generation efficiency and/or charge recombination in these blends. Fig. 3b shows that the chopping frequency dependencies in MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/C₆₀ blends are qualitatively different. The MEH-PPV/C₆₀ blend demonstrates a typical "dispersive" frequency dependency fitted by $1/(1+i(2\pi f\tau)^{\alpha})$, where α =0.44 and τ =12 ms. In contrast, the frequency dependence in the MEH-PPV/Pt_{0.75}C₆₀ blend has a characteristic knee (Fig. 3b), and any single "dispersive" kinetics does not give a satisfactory fit to the experimental data. We relate this to the contribution of MEH-PPV triplet excitons in the PIA band at 1.3 eV. In fact, a superposition of "dispersive" (α =0.35, τ =11 ms) and monomolecular (α =1, τ =1.5 ms) kinetics gives a good approximation to the observed frequency dependence in MEH-PPV/Pt_{0.75}C₆₀ blend (Fig. 3b). Therefore, our PIA data suggest that MEH-PPV triplet excitons in MEH-PPV/Pt_{0.75}C₆₀ blends are not completely quenched in contrast to MEH-PPV/C₆₀ blends. This is also supported by the PL quenching data in Fig. 2 implying that a part of singlet excitons lives a sufficient time to be converted into triplet excitons via intersystem crossing.

We discuss two factors that could explain the observed difference in photoinduced charge transfer in MEH-PPV/Pt_{0,75}C₆₀ and MEH-PPV/C₆₀ blends: (i) lower electron affinity of $(Pt_{0,75}C_{60})_n$ than C₆₀ and (ii) more enhanced phase separation observed in MEH-PPV/Pt_{0,75}C₆₀ blends as compared with MEH-PPV/C₆₀ blends.

Acknowledgements

This research was supported by the European Office of Aerospace Research and Development via the International Science and Technology Center (project 2666P) and by the RFBR (grant 03-03-32695).

- 1. G. Li, V. Shrotriya, J. S. Huang *et al.*, Nat. Mater., **4**, 864 (2005).
- 2. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Func. Mater., 11, 15 (2001).
- 3. H. Nagashima, Y. Kato, H. Yamaguchi et al., Chem. Lett., iss.7, 1207 (1994).